PHYSICAL REVIEW E 72, 036402 (2005)

Effects of polarization on inverse Bremsstrahlung heating of a plasma
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A molecular dynamic (MD) code is used to compare the rates of heating by inverse Bremsstrahlung (IB) for
circularly and linearly polarized radiation. For low intensities the heating rate is found to be independent of
polarization. However, at higher intensities the variation of the heating rate with the radiation intensity is found
to exhibit a sharper peak for circularly polarized than linearly polarized radiation. This difference is explained
in terms of differences in the variation of the electron quiver speed during the optical cycle for linearly and
circularly polarized radiation. An analytical expression—which includes a term which is nonlinear in the
density of the plasma—for the rate of IB heating is fitted to the rates calculated by the MD code.
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I. INTRODUCTION

In an earlier paper [1] we described a molecular dynamic
(MD) code for calculation of the rate of inverse Bremsstrah-
lung (IB) heating in a plasma. As discussed in detail in that
earlier work, there are several advantages in applying the
MD approach to calculations of the IB heating rate. Most
importantly, the equations solved are fundamental and so
avoid several assumptions which are inherent to alternative
methods. For example, in methods employing a Coulomb
logarithm there is always a degree of arbitrariness in choos-
ing the inner and outer cutoffs. The MD code is also capable
of handling many-body collisions correctly, and is therefore
not restricted by the assumptions inherent to a two-particle
collision approach. It has been found [1] that this results in
the heating rate varying nonlinearly with the plasma density.
Finally, the MD approach is not restricted to weakly coupled
plasmas. The main disadvantage of the MD approach is that
it is much slower than calculations based on classical, statis-
tically based methods.

Many calculations of the rate of IB heating have been
presented, some of the more important being Schlessinger
and Wright [2] in 1979, Polishchuk and Meyer-Ter-Vehn [3]
in 1994 and Pert [4] in 1995. However, to our knowledge,
the dependance of the heating rate on the polarization of the
incident radiation has not been investigated despite the fact
that these earlier methods could all, in principle, be adapted
to calculate the heating rate in this case. Kostyukov and Rax
[5] have presented calculations of the rate of 1B heating for
circularly polarized radiation, but their work focuses on rela-
tivistic effects in the ultrahigh intensity regime and does not
discuss explicitly the relation between the circular and the
linear polarized cases. Pert [6] has done calculations on el-
liptically polarized radiation using a Fokker-Planck code.
The results presented by Pert agree qualitatively with the
results presented in this paper.

In the present paper we use an MD code to compare di-
rectly the rates of IB heating for circularly- and linearly-
polarized radiation. For low intensities, where the electron
quiver velocity is of the order of the thermal velocity or less,
the heating rate is found to be the same for the two polariza-
tions. However, at higher intensities, where the electron
quiver velocity is much greater than the thermal velocity, the
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variation of the heating rate with the radiation intensity is
found to exhibit a sharper peak for circularly polarized than
linearly polarized radiation. This difference is explained in
terms of differences in the variation of the electron quiver
speed during the optical cycle for linearly and circularly po-
larized radiation. An analytical expression for the rate of 1B
heating is fitted to the rates calculated by the MD code; it is
found that it is necessary to include a term which is nonlinear
in the density of the plasma, as found previously [1] for the
case of linearly polarized radiation.

II. THE MOLECUAR DYNAMIC CALCULATION

The operation of the MD code has been described in de-
tail previously [1], and hence here we give only a short de-
scription of its main features.

A molecular dynamic calculation differs from statistically
based methods in that one starts by considering the force
acting on a given particle by all the other particles in the
system, rather than considering only two-particle collisions.
However, solving the individual force equations for each of
the N particles in a plasma would require N?/2 individual
force calculations to be undertaken every integration time-
step. Further, the time resolution has to be very high to en-
sure that even the hardest collisions are treated correctly and
hence direct integration of all the terms in the force equa-
tions is too slow to be realistic—a calculation involving 2
X 10* particles would take several months. A large reduction
in the number of calculations required can be achieved by
employing the particle-particle-particle-mesh (P3M) method
first described by Hockney and Eastwood [7]. In this method
the force on a particle is divided into a collective, long-range
term from the majority of the particles (particle-mesh); and a
short range term arising from particles close to the particle in
question (particle-particle). Using this general idea, we cal-
culate the long range effects by solving the Poisson equation
on a mesh, and treating the short-range effects by direct in-
tegration of the Coulomb force.

III. CALCULATIONS

Most important to every molecular dynamic calculation is
the right choice of the initial distribution of particles over
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velocity and position. This is slightly problematic since there
is no analytical solution for the phase-space distribution of
electrons and ions for plasmas which are not weakly
coupled. Whilst the density of the plasma is homogenous on
a large scale, it certainly is not on a small scale; the well
known effect of Debye shielding, for example, leads to local
inhomogeneity as described by the two-particle correlation
function. These, and higher order effects, will play a role in
moderately or strongly coupled plasmas. For a plasma with a
given mean density and temperature, the initial distribution
over velocity and position was calculated by running the MD
code—in the absence of any applied radiation field—until a
steady state was reached [1].

The heating rate was determined by running the calcula-
tions for 4 cycles of the laser field, calculating the increase in
the mean energy of the plasma electrons, and hence deducing
the rate of increase of electron temperature. Since the rate of
IB heating is relatively insensitive to the temperature of the
plasma, the small change in temperature AT, is accurately
given by AT,=RA¢t, where R is the heating rate at the initial
plasma temperature, and At is the interval over which the
heating is calculated. To quantify this, using the analytical fit
discussed below [Eq. (2)], a plasma with 7,=10? cm™ and
initial temperature 7,=10 eV is heated to 14.37 eV over the
14.14 fs of the simlation. The relative difference for the heat-
ing rate between a 10 eV plasma (R=0.309 eV/fs) and a
14.37 eV plasma (R=0.301 eV/fs) as predicted by Eq. (2) is
2.6%, well within the expected error.

As discussed previously [1], the statistical and numerical
errors in the calculated rate of IB heating are estimated to be
approximatley 5%. To ensure that differences in the calcu-
lated rates of IB heating for the two polarization cases con-
sidered are not due to differences in the initial phase-space
distribution or due to different choice of time-step or inner
cutoff, for a given plasma density and temperature the calcu-
lated rates of IB heating were performed with the same pa-
rameters and initial distribution.

For the case of linearly polarized radiation the electric
field of the incident radiation is assumed to be of the form
E(t)=E, cos(wt)e,, where the amplitude of the electric field
is related to the intensity / of the radiation by Ey=\2Zyl, in
which Z; is the impedance of free space. In the steady-state
the velocity of the center of mass of the electron distribution
is given by v, (f)=vgsin(wt)e,, where vp=eEy/m,w.
Hence, at r=0 the velocity of the center of mass is zero.

For circularly polarized radiation of the same intensity /
the electric field is described by E(r)=(E,/ \E)[cos(wt)ex
+sin(wt)e,], and the motion of the center of mass of the
electron  distribution by v, ()=(vg/ \E) [sin(wr)e,
—cos(wt)e,]. Hence at 1=0 the initial velocity distribution of
the electrons needs to be offset by —(vy/ \fa)ey.

Results

Figure 1 shows, for several different initial plasma condi-
tions, the variation with intensity of the calculated rates of IB
heating for both linearly and circularly polarized radiation.

IV. DISCUSSION

The results presented in Fig. 1 show that at low intensities
the rates of IB heating are essentially independent of the
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polarization of the radiation. However, for higher intensities
there is a clear difference between the heating rates: for cir-
cularly polarized radiation the peak heating rates are higher,
whilst at the highest intensities the heating rates are lower. It
is worth emphasizing that the same initial distribution and
code parameters were used for the two polarization cases; as
such the observed differences in heating rates arise from the
differences in polarization alone, and are not numerical or
statistical fluctuations.

The differences in behavior between the two polarization
cases can be explained as follows. For a given set of plasma
conditions there exists an electron quiver speed vy that opti-
mizes the rate of IB heating. This optimum arises from the
fact that, within a simplified two-particle picture, the instan-
taneous rate of IB heating is proportional to the product of
the quiver energy of the electron and the momentum transfer
cross section. The cross section for momentum transfer de-
pends on the relative velocity v, of the colliding electron and
ion, and varies approximately as v;” 4. At low radiation in-
tensities the relative electron-ion velocity is dominated by
the thermal speed of the electron, and hence the rate of IB
heating increases with the quiver energy, and hence with the
radiation intensity. At high intensities, however, the relative
electron-ion velocity is dominated by the electron quiver ve-
locity leading to a decrease in the rate of IB heating despite
the increasing electron quiver energy.

At low intensities, therefore, the rate of heating depends
only on the electron quiver energy, and since the cycle-
averaged quiver energy is independent of polarization, the
rate of IB heating is also polarization independent.

Differences in the rate of IB heating for the two polariza-
tions occur at higher intensities since the relative electron-
ion velocity then depends on the quiver speed. These differ-
ences occur despite the fact that the mean quiver speed is
independent of the polarization since for circularly polarized
radiation the quiver speed remains constant throughout the
optical cycle, whilst for linearly polarized radiation the
quiver speed varies from zero to vg. Hence for circularly
polarized radiation the rate of IB heating is constant through-
out the optical cycle, whilst for linearly polarized radiation
the heating rate varies. As a consequence, the relatively sharp
peak in the variation of R with intensity found for circular
polarization is smoothed out for linear polarization.

For a given plasma density and temperature the instanta-
neous rate of IB heating depends only on the instantaneous
quiver speed, and since this is constant for circularly polar-
ized radiation the instantaneous heating rate is the same as
the cycle-averaged rate calculated for circular polarization,
R™(I). For linearly polarized radiation the cycle-averaged
heating rate is then given by averaging this over the range of
quiver energies during the optical cycle:

‘ (7
Rlinear(p) = — f RE™(2] cos® wi)d(wt). (1)
2’77 0

It is clear that averaging over the optical cycle will lead to
a smoother variation of R'™(J) than found for RE"(]).

The MD calculations presented above are useful in that
they provide quantitative results that are free from approxi-
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mations. However, they are slow to run and therefore im-
practical for calculations in which evaluation of the IB heat-
ing rate is but a small part. It is useful therefore to use the
results of the MD calculation to find an analytical function
for the heating rate. As described earlier for the case of linear
polarization [1], a suitable analytical function is a modified
version of the IB-heating formula derived by Polishchuk and
Meyer-ter-Vehn [3]. Following the discussion above, despite
the fact that Polishchuk and Meyer-ter-Vehn derived their
expression for the case of linear polarization, the general
behavior of the heating rate with laser intensity is expected
to be similar for the case of circularly polarized radiation.

We therefore choose to fit the results of the MD calcula-
tion to the following function:

452 2
B % - 3m(4wi:)zz(vl;EE+ 03)3/2 alm)n A, (2)
with
aln) = n,.<1 - Z_Z) .
and

ln[ Cyé+ Ci8 + exp(é\%)]
CS + [ln(l + g) - Cﬁ]z

lnA=C1

T,
X ln{exp(1)+—],
hw

where

2
mug

T,

e

The modifications to the expression derived by Polish-
chuk and Meyer-ter-Vehn are as follows. The first factor in
the heating rate R, 864220%/3m(47T€0)2(Ué+ 03)3/2, is derived
from the heating rate for two-particle Coulomb collisions.
We have introduced the second factor, a(n;), to allow for
nonlinear variation of the heating rate with plasma density
arising from three or more body collisions. The third factor,
the Coulomb logarithm, was modified from the expression
derived by Polishchuk and Meyer-ter-Vehn to allow for the
sharper peak in the variation of the IB heating rate with
intensity which is observed for circularly polarized radiation,
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and stabilized for cases where 7,=%w as discussed previ-
ously [1]. We note that Eq. (2) has a different form than that
which we used previously to fit the IB heating rate for linear
polarization [1]. The expression used for linearly polarized
radiation did not fit the calculated heating rates for circular
polarization very well; in particular the sharper peaks found
for circular polarization were not well reproduced. It should
be stressed that the analytical expressions we have used are
modifications of those derived by Polishchuck and Meyer-
ter-Vehn [3], but these modifications are not based on any
physical model and were merely chosen to fit the results of
the MD calculations over a wide range of conditions.

The constants C;, i=1 to 6 were determined by numeri-
cally fitting Eq. (2) to all the calculated heating rates for
circular polarization presented in Fig. 1. This yielded the
following values for the fit parameters:

C,=46.710,
C,=2.180 X 10’ m™3,
C;=0.0725,
C,=0.102,
C5=19.297,

Ce=2.933.

The resulting fits are shown in Fig. 1. We see that Eq. (2)
fits the results of the MD calculations quite well, and cer-
tainly gives more accurate values for the heating rate than
using our earlier expression [1] for linearly polarized radia-
tion, or using functions derived by a two-body Coulomb
logarithm approach. One should bear in mind, however, that
Eq. (2) has been determined by fitting to a relatively low
number of MD calculations performed in the density regime
n;<10*' cm™, intensity regime 102 W cm2<1<10"
W cm™2, and temperature regime 5 eV <T,<20 eV. Caution
is advised when using it outside this regime.

We now illustrate that the cycle-averaged heating rate for
linearly polarized radiation may be deduced from the calcu-
lated rates for circular polarization. Figure 2 shows the fitted
analytical functions for linearly and circularly polarized ra-
diation for a plasma with n,=10?° cm™ and 7,=10 eV. Also
shown is the heating rate for linearly polarized radiation cal-
culated by integrating the fitted expression for circularly po-
larized radiation [Eq. (2)] over the optical cycle using Eq.
(1). The agreement with the fitted analytical formula for lin-
early polarized radiation is very close; the small differences
arise only from inaccuracies in the analytical formulas.

The nonlinear dependence of the heating rate on the
plasma density, as introduced by the term « from Eq. (2), is
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FIG. 2. Comparison of the heating rate R using the fitted formu-
las for a plasma with initial values of n,=10% cm™, T,=10 eV.
The three curves show the fit to the linear heating rates (solid line),
the fit to the circular heating rates (dashed line), and the linear
heating rate calculated by integrating over the circular curve (dotted
line), Eq. (1).

consistent with the result found previously for linear polar-
ization. The deduced value of C,=2.180% 10*! cm™ (com-
pared to C,=2.211X10?! cm™ for the linear case) shows
that the heating will vary nonlinearly with plasma density for
plasmas with densities greater than ~5X10?° cm™. The
nonlinear dependence of the heating rate on plasma density
is likely to be caused by the increasing importance of three-
(and more) body collisions at high density.

V. CONCLUSION

In summary, we have used an MD code to compare di-
rectly the rates of IB heating for circularly and linearly po-
larized radiation. For low intensities the heating rate was
found to be the same for the two polarizations. However, at
higher intensities the variation of the heating rate with the
radiation intensity was found to differ for the two polariza-
tion cases. This difference was explained in terms of differ-
ences in the variation of the electron quiver speed during the
optical cycle for linearly and circularly polarized radiation.
An analytical expression for the rate of IB heating was fitted
to the rates calculated by the MD code that could be incor-
porated into larger plasma codes. As found previously [1] for
the case of linearly polarized radiation, the results suggest
that the heating rate increases sublinearly with plasma den-
sity for densities greater than approximately 5 X 10%° cm™.
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